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Abstract: This paper deals with a UAV LiDAR methodological approach for the identification and 
extraction of archaeological features under canopy in hilly Mediterranean environments, characterized 
by complex topography and strong erosion. The presence of trees and undergrowth makes the 
reconnaissance of archaeological features and remains very difficult, while the erosion, increased by 
slope, tends to adversely affect the microtopographical features of potential archaeological interest, 
thus making them hardly identifiable. For the purpose of our investigations, a UAV LiDAR survey 
has been carried out at Perticara (located in Basilicata southern Italy), an abandoned medieval village 
located in a geologically fragile area, characterized by complex topography, strong erosion, and a 
dense forest cover. All of these characteristics pose serious challenge issues and make this site 
particularly significant and attractive for the setting and testing of an optimal LiDAR-based approach 
to analyze hilly forested regions searching for subtle archaeological features. The LiDAR based 
investigations were based on three steps: (i) field data acquisition and data pre-processing, (ii) data 
post-processing, and (iii) semi-automatic feature extraction method based on machine learning and 
local statistics. The results obtained from the LiDAR based analyses (successfully confirmed by the 
field survey) made it possible to identify the lost medieval village that represents an emblematic case 
of settlement abandoned during the crisis of the late Middle Ages that affected most regions in 
southern Italy. 
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1. Introduction 
Archaeological heritage in woodland is undoubtedly protected from the destructive 

effect of modern anthropogenic activities by the presence of tree cover, which, at the same 
time, prevents knowledge of them and makes investigations difficult and time consuming. 

The tree cover makes geophysical prospection and excavations almost impossible and 
the use of remote sensing based on optical imagery quite ineffective.  In these conditions, 
LiDAR is the only tool that enables us to “filter out” the canopy to reveal archaeological 
remains and microtopographical changes of cultural interest. A LiDAR scanner, mounted 
on aerial platforms, including unmanned aerial vehicles (UAVs), sends hundreds of 
thousands of pulses of light toward the area to be investigated. Most of them are reflected 
off the forest canopy and a few reach the ground and are reflected back through the canopy. 
Recording how long it takes the light to return to the scanner produces a point cloud. 
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Over the past two decades, LiDAR has found increasing popularity in archaeology 
and has opened new perspectives in the study of the human past, revolutionizing the 
domain of surveying to capture and depict archaeological features under canopy [1–11]. 
The popularity of this approach in the archaeological field is such that it has led experts 
to create workflows and tools for archaeology that are different from approaches used in 
other disciplines, as described in [12,13]. Moreover, numerous studies also adopted a 
standard approach, consisting of: (i) raw data acquisition and processing [7,14,15], (ii) 
point cloud processing and post-processing [14,16], (iii) archaeological interpretation 
phase [12,16,17], and (iv) dissemination [4,12,15,17].  

The study of abandoned medieval settlements in highland areas is one of the fields 
of archaeological research that can greatly benefit from the use of LiDAR technology [5]. 
They are the result of “social desertification” of vast territories in Europe since the first 
decade of the 14th century, characterized by a demographic decline [18–22] occurring after 
four centuries of prosperity (from the 10th to 13th century) and population growth [19].  

As a whole, there are two main reasons why LiDAR lends itself well to the survey 
and study of abandoned or lost medieval settlements:  
1) Their location in hilly heights (in most cases for defensive reasons), especially in 

southern Europe, hence the need to discriminate anthropic topographic and 
microtopographic features from those of geomorphological nature [23,24];  

2) The forest/vegetation cover that generally tends to hide a large part of these 
settlements, hence the need to filter out the point clouds of the vegetation to reveal 
the archaeological features. 
These challenging conditions can be faced using: 

i. A LiDAR survey with a very high density of points that typically can be obtained by 
UAV; 

ii. Point cloud processing approaches devised for archaeological micro-relief features 
that are generally very subtle and, therefore, could be completely filtered out 
(mistaken for low vegetation) [13]; 

iii. Effective enhancement using digital terrain models and feature extraction methods 
to facilitate and improve the archaeological interpretation. 
Significant advances in and from LiDAR applications have been obtained in the last 

decade including: (i) DTM (Digital Terrain Model), DFM (Digital Feature Model), or NVS 
(Non-Vegetated Surface) [12,13,25] visualization enhancement techniques, such as Sky View 
Factor [26], Local Relief Model [27], Openness [28], whose performances are strongly 
dependent on local conditions and generally evaluated subjectively through visual 
inspections; (ii) supervised and unsupervised classification, such as Object-Based Image 
Analysis (OBIA), Machine-Learning classification (ML), and Deep-Learning classification 
(DL) [4,29–32]. 

This paper presents a three-step methodological approach, based on (i) field data 
acquisition, (ii) data pre-processing and data post-processing aimed at data enhancement, 
and (iii) automatic feature extraction, devised to identify subtle archaeological 
microtopography under canopy in Mediterranean environments.  

For this purpose, a UAV LiDAR survey has been carried out at Perticara (located in 
Basilicata, Southern Italy), an abandoned medieval village located in a geologically fragile 
area characterized by complex topography and strong erosion and covered by a dense 
vegetation canopy. All of these characteristics pose seriously challenging issues for the 
identification and extraction of the subtle microtopography of archaeological interest and 
make this site particularly significant and attractive for the setting and testing of LiDAR-
based automatic chain processing. 

From an archaeological point of view, the investigations were performed both to 
detect and to spatially characterize the urban shape of the site and to provide information 
to understand the potential causes that determined its abandonment.  
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From a technological and methodological point of view, the aim is to evaluate the 
potential of UAV LIDAR coupled with machine learning in identifying and extracting 
archaeological features, including not only wall remains (easy to identify) but also, and 
above all, subtle proxy indicators related to microtopographical variations under dense 
canopy.  

2. Material and Method 
2.1. Study Area: Historical and Archaeological Setting 

The study area is the abandoned village of Perticara settled on a hill overlooking the 
Sauro Valley south of Basilicata, a region situated between Apulia and Campania (in 
Southern Italy). 

Basilicata, as many other regions of southern Europe, went through a period of 
profound social, territorial, and economic reorganization, accompanied by a demographic 
decrease [33]. Many villages and rural settlements disappeared and the surviving 
population moved to nearby towns or villages. In particular, from 1277 to 1447 
approximately 30% of the villages in Basilicata were abandoned for reasons that are still 
not entirely clear today. This phenomenon was accompanied by a population decline of 
15% from 1277 to 1320 and of 4% from 1320 to 1447 [5]. 

The Sauro valley is characterized by an intense human presence from the proto-history 
to the Middle Ages; it is archeologically documented. In particular, there are several sites that 
have been permanently inhabited from Late Antiquity to the Middle Ages, such as Torri, 
Cornito (currently called Corleto), and the recently investigated “Eremita” site  [34]. They 
represent different kinds of settlement, from the vicus (houses and lands in the same 
settlement, developed during Late Antiquity) to the castrum (medieval fortified village) 
(Figure 1). 

 
Figure 1. Geographical location of the site of the abandoned village of Perticara (Coordinate Reference 
System WGS 84 EPSG::4326). 

The archaeological research in this area has brought to light numerous findings—
dated from the classical age to the modern age—related to works of regimentation of 
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meteoric and spring waters, designed and used both to (i) rationalize the use of water 
resources and (ii) to protect the settlements—with the related agricultural and pastoral 
activities—from the frequent landslides affecting the site. The attention paid to the 
management of hydrogeological risk allowed the foundation and development of some 
settlements in these geologically unstable areas. The most important are: (i) Torri, a seat 
of the diocese in the 12th century, located on a plateau to control the confluence of the 
Piscone torrent with the river Sauro (damaged by a landslide in 2003); (ii) Perticara, named 
Castrum Perticarii in the documents of the 12th century. 

Perticara was founded between the 11th and 12th centuries. It had a period of great 
demographic development between the mid-12th century and the 13th century. In 
particular, according to the Angevin tax register dating back to 1277, Perticara paid 240 
“fuochi” or hearthstone (about 1200 inhabitants), more than twice as much as the 
neighboring centers of Corleto and Guardia (101 and 100). In 1320, the number of 
hearthstones halved. The decline of the village continued without interruption until it 
disappeared in the 15th century, as evidenced by the taxation of 1447 that no longer 
included Perticara among taxed inhabited settlements. The causes of this abandonment—
that probably occurred between the end of the 14th century and the beginning of the 15th 
century—are various; they are linked to global and local factors, as in other areas of the 
region. In Basilicata, many rural settlements came into crisis due to the tax burden, 
epidemics, pestilences, and widespread conflicts in the first decades of the Angevin age 
[35]. Demographic decline and settlement abandonment are frequent, especially in the 
case of destructive events such as an earthquake or a landslide [36] that probably caused 
the decline of Perticara.  

The historical reconstruction of the agricultural landscape and land use, the 
approximate data of the population (taken from the tax registers), and the archaeological 
and architectural evidence allow us to add information to the general and local framework 
and to interpret them. 

2.2. Geological and Geomorphological Setting 
The site is located between the axial and the frontal area of the southern Apennine 

Mountains, 5 km northeast of Corleto Perticara village (Figure 2a). 
The southern Apennines consist of a fold-and-thrust belt developed from the Upper 

Oligocene–Lower Miocene boundary onwards as a result of the tectonic accretion wedge 
towards NE of different Meso–Cenozoic paleodomains [37] (Figure 2b). 

Perticara is located along the Caperrino Ridge. This morphostructure is 12 km long and 
NNW-SSE oriented. It separates the Fiumara di Gorgoglione drainage basin in the north-
east from the Fiumarella di Corleto drainage basin in the south-western area. The 
geomorphological features of the area are closely related to the outcropping units. In 
particular, lithology and bedding attitude strictly control the acclivity of the slope. Slopes 
with high acclivity widely occur in the eastern sectors. Locally, the slope gradient is reduced 
considerably only in areas where clay deposits such as varicolored clays and shales crop 
out. Along the basin slopes, different geomorphological features such as trenches and 
morphological steps are very common. The landslides recognized in the study area have 
been classified as complex landslides [38]. In particular, the landslides occurring in the study 
area are controlled by a large number of factors, some of them often acting in concert. 
Among these, bedding attitude, tectonic structures, the thickness of the various lithological 
units, and the lithology play a fundamental rule. Differences in permeability and 
competence of the various rock types, which are strictly linked with compositional 
variations and/or grain size, are other important factors to take into account.  In addition, 
the landslides detected were triggered in the past by abundant precipitation. Land sliding 
is also conditioned by topographic parameters, such as the slope gradient and the exposure. 
In particular, this latter parameter controls soil moisture and consequently the amount of 
vegetation cover. Based on a detailed field survey, supported by the analysis of stereoscopic 
aerial photographs, different landslide types, including earthflows, complex landslides, and 
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falls, have been recognized and mapped (Figure 3). In addition to landslides, areas affected 
by slow soil movements such as solifluction have been detected. In particular, the landslide 
that led to the abandonment of the Perticara site started in the south-eastern part of the crest 
of Caperrino Mount and diverted the Fiumarella di Corleto path downstream. The landslide 
was classified as a large earthflow and is currently considered dormant [39]. 

 
Figure 2. (A) Geological sketch map of the southern Apennines, (B) relationship between different 
stratigraphic–structural units ([40], modified). 

 

Figure 3. Geomorphological setting of the Perticara site. 

2.3. Methods 
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The methodology used for the analysis at the Perticara site can be summarized in 
three different and separate phases: (i) field data acquisition and pre-processing, (ii) data 
post-processing, and (iii) automatic feature extraction (Figure 4). 

 
Figure 4. LiDAR processing flowchart. 

2.3.1. Field Data Acquisition and Data Processing 
The LiDAR survey at the Perticara site was carried out using a 5-echo Riegl MiniVux-

3 LiDAR (RIEGL Laser Measurement Systems GmbH, Austria), equipped with a GNSS 
PPK positioning system, used as a payload on a DJI Matrice 600 drone. 

The LiDAR acquisition covered a useful area, i.e., free of noise due to beam scattering, 
of 10,645 ha. The flight was conducted at an altitude of 70 m a.g.l. (above ground level), 
with a lateral spacing between strips of 20 m, at a constant speed of 3 m/s, and a 120 degree 
FOV (Field of View), in a double acquisition grid mode, using the UgCS pro v.4.6520 soft-
ware (SPH Engineering, Latvia), using the DEM (Digital Elevation Model) provided by 
Tinitaly (http://tinitaly.pi.ingv.it/) for the Italian peninsula [41–44] (Figure 5a,b). The ac-
quisition was conducted in a double grid as it was considered by the authors advanta-
geous compared with a single acquisition (Figure 5c–f). In fact, by having a LiDAR oper-
ating on a drone and not an airplane/helicopter, it was very easy to set up the second flight 
plan, with an expenditure of time and resources of a few tens of minutes. 
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Figure 5. Representation of the flight route performed for the LiDAR survey: (a) first route and 
elevation profile, (b) second route and elevation profile, (c,d) schematization of the advantage of the 
methodology for structures/topographical microreliefs; (e,f) schematization of the advantage of the 
methodology on sloped landscapes. 
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The flight was conducted on 12 December 2021, during a period in which there is less 
undergrowth and less foliage in the trees with respect to other months, to the advantage 
of a greater amount of ground points. The local vegetation consists of oak, downy oaks, 
broom, and grass. 

The data acquisition was then followed by the data pre-processing phase, as de-
scribed by Riegl for this instrument. The pre-processing phases to pass from the data ac-
quired from the LiDAR to the raw georeferenced point cloud were: (i) acquisition of the 
RINEX GNSS data coming from the fixed stations located on the Italian peninsula; (ii) 
correction of the route acquired by the PPK antenna on the basis of the data from the fixed 
stations in the Applanix POSPac UAV software v.8.7 (Applanix, Richmond Hill, Ontario); 
(iii) use of Riegl's RiPROCESS v.1.9 suite for the creation of the point cloud in the WGS 84 
UTM 33 N system. Riegl's Riprocess software allows point clouds to be generated from 
LiDAR data acquired at multiple times (several acquisitions) by reprocessing the data as 
if they were from a single flight to obtain a single point cloud. The software uses the Pro-
ject Merge Wizard and RiPRECISION commands to merge the two flights by (i) setting 
the roto-translation matrices to a raw matrix and then re-processing a valid one for both, 
(ii) generating the point cloud using the data from the two scans, and (iii) refining the 
global alignment of the data. 

According to the LiDAR specifications, under ideal conditions, each individual ac-
quisition strip generated a point cloud with a density of 142 points/m2. However, the ac-
quisition took place in dual grid mode, which affected the density of points per m2. The 
density was inhomogeneous due to a number of determining factors such as (i) sum of 
the points/m2 of the two individual point clouds generated by the individual acquisitions, 
(ii) drone speed subject to microdelays/accelerations due to wind, and (iii) morphological 
discontinuity of the recorded subject.  

2.3.2. Cloud Point Processing and Automatic Feature Extraction 
Once the georeferenced point cloud was obtained by LiDAR processing (see Section 

2.3.1), procedures for point classification were prepared. Several methods for classifying 
ground points from off-ground points can be found in the literature [29,30,45–52]. The 
extraction of the ground profile from the point cloud was achieved using Global Mapper® 
v.22.1 software. Global Mapper® (Blue Marble Geographics, Maine, U.S.A.) uses a hybrid 
filter type (BMHF) [45].  

The classification operation of the point cloud to obtain the DFM (terminology cho-
sen in accordance with [13] as it indicates both the digital terrain model and the features 
of archaeological interest embedded in it or completely above ground) were: (i) classifica-
tion of ground points from off-ground points using the automatic classification algorithm 
in the software; (ii) removal of noise points (i.e., points too far from the points classified 
as ground). Finally, the classified point cloud was exported. The classified point cloud, for 
study interest classes only, had a varying density of points per m2 from a minimum in 
areas with high vegetation (0 to 30 points/m2 approx.), to areas with less dense vegetation 
(80–150 points/m2 approx.), to a maximum in bare areas (600–800 points/m2 approx.). 

The point cloud was then subjected to a Spatially Resampling Interpolation using the 
open-source software Cloud Compare v.2.12.4 to obtain a cloud with a constant point 
density, set with a spacing GSD (Ground Sample Distance) of 0.02 m, using the rasterize 
tool. The aim of this tool is to convert the point cloud into a 2.5D grid that can be re-
exported as a new point cloud, mesh, or raster (georeferenced) [53]. This task can also be 
conducted using the function LasThin in the LASTools software (Rapidlasso GmbH, Ger-
many), often used for classifying LiDAR data in archaeology [12,13]. The DFM was then 
created and exported using the same command, with a cell of 0.02 × 0.02 m (Figure 6). 
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Figure 6. Comparison of (a) point cloud created by merging data from the two LiDAR acquisitions, 
and (b) point cloud generated by Cloud Compare. 

The DFM obtained was then subjected to several operations to improve the rendering 
and visibility of the archaeological features. The operations were of two types: (i) noise 
reduction of the DFM, according to the methodology already proposed in [4,29,54]; (ii) 
creation of DFM derived from different visualization techniques, as proposed for archae-
ological studies in [1,5,26,55–57]. 

Noise and speckle reduction was done using the GRASS GIS operator, in the QGIS 
software. The algorithm used was an enhanced Lee filter [58]. Lee filter reduces noise by 
applying a spatial filter to each pixel and is based on the analysis of local statistics calcu-
lated in a square window. The value of the pixel in the center of the window (set to 9 × 9 
in the present study) is calculated as the mean or weighted average of the neighboring 
pixels. The enhanced Lee filter is an improved version of the Lee filter that not only re-
duces noise but also preserves the detail and sharpness of the original image [59]. The 
value of the beveled pixel is then calculated as (1): 

LM for CI ≤ CU 

LM * K + PC * (1 − K) for CU < CI < Cmax 

PC for CI ≥ Cmax 
(1)

where 
I. LM is the Local Mean of filter window; 

II. CU = √  is the noise variation coefficient; 

III. Cmax =  is the maximum noise variation coefficient; 

IV. CI =  is the image variation coefficient; 
V. K = 𝑒( ( )/( ); 

VI. PC is the Center Pixel value of window; 
VII. SD is the Standard Deviation in filter window; 

VIII. NLooks is the Number of Looks; 
IX. D is the Damping factor. 

After filtering with the enhanced Lee filter, the second operation performed was the 
enhancement of DFM, creating derivatives based on a number of visualization techniques. 
These techniques are generally based on how the illumination interacts with the points in 
the DFM as discussed in [5,26,57,60]. For this study, the open source tool RVT (Relief 
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Visualization Toolbox) developed by Kokalj et al. [57] was used in order to create useful 
derivatives for site analysis (Table 1). 

Table 1. Derivatives based on visualization techniques. 

Visualization Method Parameters 
Analytical Hillshading Sun azimuth (deg): 315; Sun elevation angle (deg): 35 

Hillshading from Multiple Directions Number of directions: 16; Sun elevation angle (deg): 35 
PCA of Hillshading Number of components to save: 3 

Slope Gradient No parameters required 
Simple Local Relief Model Radius for trend assessment (pixel): 20 

Sky-View Factor Number of search directions: 16; search radius (pixel): 20 
Openness Positive Number of search directions: 16; search radius (pixel): 20 

Openness Negative Number of search directions: 16; search radius (pixel): 20 
Archaeological (VAT) Used preset: general 

The data thus produced were then used for the classification of features of interest in 
the reconstruction of the archaeological context. 

2.3.3. A Machine Learning-Based Approach for a Semi-Automatic Feature Extraction 
The process of classification to extract features of archaeological interest is based on 

the following steps: (i) selection of data to be classified; (ii) choice of the classifier; (iii) 
preparation of data for the classification; (iv) classification run; (v) extraction of local sta-
tistics; (vi) feature identification and cleaning. The classification operations were auto-
matic (unsupervised classification); however, the second stages of operations, namely seg-
mentation, cleaning and identification, were supervised. 

The data used for the classification were those produced by the DFM visualization 
enhancement processing as described in 2.3.2, specifically: (i) Hillshading from Multiple 
Directions (HS); (ii) Slope Gradient (Slope); (iii) Simple Local Relief Model (SLRM); (iv) 
Sky-View Factor (SVF); (v) Anisotropic Sky-View Factor; (vi) Openness Positive (OP); (vii) 
Openness  Negative (ON); (viii) Archaeological (VAT) derived from a blend of SVF, OP, 
Slope, and Analytical Hillshading.  

The choice of the data to be used was then succeeded by the choice of the classifier to 
be used before the feature segmentation procedures. The preparatory operations for clas-
sification and ISODATA classification were done using SAGA GIS 7.8.2 operating within 
the QGIS environment [61]. 

A data normalization operation was applied before classifying the data. The goal of 
normalization operations is to transform all data to a similar scale in order to improve the 
performance of classification algorithms. There are several types of normalization, such 
as: (i) scaling to a range; (ii) clipping; (iii) log scaling; (iv) z-score [62–65]. The type of 
normalization used is scaling, which means converting feature values into a standard 
range (e.g., 0 to 1, −1 to 1), according to the Formula (2): 

XI = (X − Xmin)/(Xmax − Xmin)  (2)

The data thus processed were subsequently used for classification. 
The operations were carried out using an unsupervised ISODATA classifier. There 

are several types of unsupervised classifiers used in the context of Remote Sensing studies 
applied to archaeology, such as (i) the Kmeans clustering algorithm and (ii) the ISODATA 
(Iterative Self-Organizing Data Analysis) algorithm [66–68]. Unsupervised classification 
algorithms classify pixels on the basis of their characteristics (e.g., spectral feature) with-
out the need for prior training. This is optimal in the context of an archaeological study 
based on LiDAR data derivatives, as features of archaeological interest are not prior 
known [69–72]. Seven classes were used for clustering. The present study was conducted 
using an ISODATA-type classification. 
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A LISA (Local Indicator of Spatial Autocorrelation) process was then applied to the 
classified data via ISODATA to improve the visualization of the spatial aggregation and 
autocorrelation of pixels [73,74].  

The function was applied to calculate the spatial autocorrelation using the indices: (i) 
Moran's I, (ii) Geary's C, and (iii) Getis–Ord G index [75–77]. Moran's I, Geary's C, and 
Getis–Ord G indices were calculated in accordance with Anselin (3, 4) [75] and Getis–Ord 
Formula (5) [76]: 𝐼 =  𝑍 𝑊 𝑍  (3)

𝐶 =  (𝑁 − 1) ∑ ∑ 𝑊 (𝑥 − 𝑥 )2(∑ ∑ 𝑊 ) ∑ 𝑍  (4)

𝐺∗  =  ∑ 𝑊 (𝑑)𝑥∑ 𝑥  (5)

where (i) Zi is the deviation of the variable of interest; (ii) Wij is a spatial contiguity matrix 
with a zero diagonal and the off-diagonal non-zero elements indicating the contiguity of 
positions i and j; (iii) N is the number of the pixels; (iv) xi and xj are intensity in points i and 
j (with i ≠ j) [77]. The spatial autocorrelation analysis outputs a new image where pixels are 
aggregated for their correlation in a window around a pixel, highlighting features not al-
ways immediately visible and reducing background noise (e.g., salt and pepper). 

Among the created indices of local spatial autocorrelation, the Getis–Ord G index 
was used for the subsequent segmentation phase in order to extract features of interest in 
the reconstruction of the archaeological landscape. Segmentation is a process of the Ob-
ject-Based Image Analysis (OBIA) that involves the classification of features on the basis 
of several variables such as (i) pixel value, (ii) object shape, (iii) textural information, (iv) 
neighborhood analysis, as opposed to pixel-oriented classification, usually used in the 
analysis of LiDAR data for archaeological purposes [32,60,78–81]. For this study, segmen-
tation was applied directly to the Getis–Ord G index, with the following parameters: (i) 
spatial radius of the neighborhood equal to 5; (ii) minimum region size equal to 40. Finally, 
the resulting vector file was further cleaned using a spatial criterion, with a threshold 
based on the surface area (area in m2) of the individual features. The filtering scheme was 
carried out using a progressive threshold as follows: (i) all vectors with area < 1 m2 and 
area > 12,000 m2 were removed (considered to be scattered pixels and background noise 
of the source data, respectively); (ii) relying on the automatic categorization of the QGIS 
software for vector display, vectors with area < 3 m2 were removed because they are not 
considered useful for archaeological purposes. 

All the data thus produced were then analyzed and interpreted in a GIS system. 
The data derived from the LiDAR acquisition were also observed by archaeologists 

to manually trace structures and microreliefs of possible archaeological interest identifia-
ble on them. 

Finally, in order to evaluate the accuracy of the result obtained from the automatic 
extraction, functions were applied to understand the overlap of the automatically ex-
tracted features and those optically identified by the archaeologists, following the exam-
ple proposed by Masini et al. [4]. 

The method used to estimate the linear length overlap between automatically identi-
fied features and manually identified features in the different LiDAR-derived products is 
described by the Formula (6): 𝜇𝑥 = 𝐿𝑥 − 𝐿𝑥𝐿𝑥 + 𝐿𝑥   (6)

where μxi is a modified version of the normalized visibility index proposed by Masini et 
al. [4], referring to the linear length overlap between the length of segments identified 
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automatically by the automatic extraction process (LxiAEF) and those identified optically 
on the different derived LiDAR product (LxiFDM). The result is a number between −1 and 1, 
where values close to 0 indicate a good match while values tending toward −1 and 1 indi-
cate underestimation or overestimation of the segment length by the segmentation algo-
rithm, respectively. 

The segments considered for this analysis were then divided into classes (e.g., walls, 
buildings, and tower) and Formula (7) was applied to calculate the weighted average nor-
malized visibility index as proposed in Masini et al. [4]. 𝜇 = ∑ 𝐿𝑥 ∗ 𝜇𝑥∑ 𝐿𝑥  (7)

3. Results and Discussion 
3.1. Results and Discussion: LiDAR Data, Derived LiDAR DFM, and Automatic Feature 
Extraction Methods 

The elaborations conducted on the data acquired at the Perticara site have improved 
the understanding of the medieval site, as well as the morphology of the landscape in the 
immediate surroundings. The key elaboration in the extraction of the information was the 
point cloud classification. The result was a quite clean DFM, subsequently further 
smoothed thanks to the enhanced Lee filter (Figure 7). 

 
Figure 7. (a) Classified ground/non-ground point cloud; (b) filtered point cloud (top view); (c) fil-
tered point cloud (perspective view); (d) Digital Surface Model (DSM), hillshading; (e) enhanced 
Lee filtered Digital Terrain Model (DFM), hillshading. 
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Although the DFM showed microreliefs and traces of archaeological interest, the prod-
ucts derived from it (see Section 2.3.2) significantly improved this visibility (Figure 8). 

 
Figure 8. DFM derived products: (a) HS; (b) MHS; (c) PCA of HS; (d) Slope; (e) SLRM; (f) SVF; (g) OP; 
(h) ON; (i) Archaeological VAT. 

Among the DFM-derived products: (i) Hillshading, Multiple Hillshading (MSH), and 
PCA (Principal Component Analysis) of Hillshading are among the most automatically 
understandable and provide the immediate overview of the ground and of the microre-
liefs; (ii) on the contrary, Slope, SLRM, SVF, OP, ON, and Archaeological VAT require a 
minimum of interpretation, although they greatly improve the visibility of microreliefs, 
archaeological structures, and landscape elements (e.g., landslides, quarries). 

In addition, derivative products were crucial for automatic classification by unsuper-
vised classifiers. The result of the ISODATA classification was a single output, against 
multiple derived products, from which only features of interest to the presented study 
were subsequently extracted. However, the automatic feature extraction was achieved by 
applying a segmentation step obtained through LISA (Local Indicators of Spatial Associ-
ation) indices, of which the most useful in this particular case was the Getis–Ord G index. 
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An important contribution was made by the interpretation of features by archaeolo-
gists and geomorphologists using GIS, which allowed: (i) the classification of features use-
ful for the reconstruction of the ancient context, (ii) the exclusion of false positives, and 
(iii) the recording of features missed by the unsupervised classification (Figure 9). 

 
Figure 9. (a) ISODATA result; (b) Getis–Ord G index; (c) extracted features after the first cleaning 
operation; (d) archaeological and geomorphological characterization after second cleaning opera-
tion (see Section 2.3.3). 

The method is inspired by Masini et al. [4] for the medieval site of Cisterna, which is 
developed according to the scheme: (i) LiDAR derived (i.e., SVF), (ii) LISA (Geary’s C), 
(iii) ISODATA, and (iv) segmentation [4]. 

In difference to this process, the method used by this study is structured in such a way 
as to (i) minimize manual operations by merging the data through normalization and classifi-
cation operations and (ii) reduce the salt-and-pepper effect produced by the high resolution, 
through LISA (Getis–Ord G index), before performing segmentation. In fact, the substantial 
difference between the two studies lies in the different resolution of the data, which in the case 
of Cisterna reaches 0.5 m/pixel while in the case of this work it is about 0.02 m/pixel. The very 
high resolution available in the case of the Perticara datum on the one hand allows for a sharp 
image of the features and microreliefs of archaeological interest, while on the other hand it 
presents a large amount of microfeature and spackle, especially when subjected to Geary's C 
index. For this reason, the process has been modified so that pixels are clustered in the best 
way possible (e.g., enhanced Lee filter, classification, LISA) and the noisy effects that such high 
resolution can give in the case of automatic feature identification are reduced. 

3.2. Results and Consideration about Accuracy Assessment of the Automatic Extraction Method 
The results of the comparison between automatically and manually identified features, 

obtained as described in the methodologies, are shown in Table 2 and Figures 10 and 11. 
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Automatically extracted data were compared with those identified by archaeologists 
on LiDAR derivatives (Figure 10a,b). 

 
Figure 10. (a) Archaeological and geomorphological characterization after second cleaning operation; 
(b) manually identified features. 

 
Figure 11. Comparison of the length of segments identified automatically and manually, according 
to Formula (6). 
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The testing for the accuracy of the automatic versus the manual extraction method 
provided two interesting results. The first is based on the length of segments identified. 
As shown in Table 2 and Figures 10 and 11, if a segment was identified simultaneously by 
the automatic extraction method and the autopsy identification, the discrepancy between 
the two is in most cases very small. As shown in Table 2, in many cases an average overall 
overlap between different LiDAR derivatives greater than 90% is achieved (e.g., w1: 98%, 
w2: 98%, w3: 96%, b2: 95%, b6: 96%). In addition, Table 2 shows values very close to 0 
(high percentage of accuracy) ranging from +1 to −1, in agreement with Formula (6). These 
values are negative on average and indicate that the adopted automatic extraction system 
tends to slightly overestimate the length of segments. 

Figure 12 shows aggregated data by archaeological features (walls, buildings, and 
towers) and the enhancement techniques (OP, SLRM, PCA, SVF, Slope, VAT).  

Analyzing the results for the diverse archaeological features, the lowest values of the 
normalized visibility index (μxi,) corresponding to an optimal matching between segments 
identified automatically by the automatic extraction process (LxiAEF) and those identified 
optically on the different derived LiDAR product LxiFDM) are recorded for the microrelief 
relating to the buildings. 

Analyzing the data for the different enhancement techniques and observing the building 
features, the best results are recorded for OP and SLRM (0,88%, 0,02%, respectively). 

The highest values of the normalized visibility index (related to worse results in 
terms of matching between extracted features and optically identified features) are rec-
orded for the tower (average values ranging 5,1% to 6,4%), the only feature clearly visible 
on the ground as walled remains of it are preserved.  The reason is given by the fact that 
on the sides of the wall structures there is abundant collapse material, increasing the size 
of the automatically extracted segments. 

Table 2. Testing for the accuracy of the automatic versus the manual extraction method. The best 
results are achieved for the normalized visibility index of archaeological features that are related to 
OP and SLRM for building feature and to SVF for walls and perimeter features. 

 xi  L (m) OP (m) SLRM 
(m) 

PCA 
(m) 

SVF 
(m) 

Slope 
(m) 

VAT 
(m) 

µOP µSLRM µPCA µSVF µSlope µVAT 

Wall and 
perimeter 
features  

W1  28.3 28.4 28 26.7 27.8 28.8 28.8 0.0018 −0.0053 −0.0291 −0.0089 0.0088 0.0088 
W2  21.1 21.1 22 21.6 21.9 21.3 21 0.0000 0.0209 0.0117 0.0186 0.0047 −0.0024 
W3  52.6 52.8 49.2 50.1 52.4 48.1 52 0.0019 −0.0334 −0.0243 −0.0019 −0.0447 −0.0057 
W4  19.2 10 17.4 16.5 17.6 16.8 15.8 −0.3151 −0.0492 −0.0756 −0.0435 −0.0667 −0.0971 
W5  32 33 36 30.6 33.1 23.4 32.1 0.0154 0.0588 −0.0224 0.0169 −0.1552 0.0016 
W6  48.6 39.7 31.1 44.4 48 49 46.4 −0.1008 −0.2196 −0.0452 −0.0062 0.0041 −0.0232 
∑Lw μLDM  −0.032 −0.034 −0.028 −0.002 −0.031 −0.013       

   −3.20% −3.4& −2.8% −0.20% −3.10% −1.3%       

Buildings 

B1  83 78.3 83.8 49 75 83.2 82 −0.0291 0.0048 −0.2576 −0.0506 0.0012 −0.0061 
B2  14.7 13.5 13.8 10.7 11.8 12.4 13.9 −0.0426 −0.0316 −0.1575 −0.1094 −0.0849 −0.0280 
B3  16 14.7 14.6 11.6 12.3 11 12.4 −0.0423 −0.0458 −0.1594 −0.1307 −0.1852 −0.1268 
B4  17.9 19.2 20 17.7 16.3 15.3 15.8 0.0350 0.0554 −0.0056 −0.0468 −0.0783 −0.0623 
B5  22 21.3 21.3 19.9 20 19.5 20.5 −0.0162 −0.0162 −0.0501 −0.0476 −0.0602 −0.0353 
B6  14 13.5 13.1 13.4 13.6 12.9 12.9 −0.0182 −0.0332 −0.0219 −0.0145 −0.0409 −0.0409 
B7  7.9 7.5 7.5 7.6 7.5 7.1 7.6 −0.0260 −0.0260 −0.0194 −0.0260 −0.0533 −0.0194 
B8  19 21 21.8 18.4 18.1 17.1 18.8 0.0500 0.0686 −0.0160 −0.0243 −0.0526 −0.0053 
B9  48 49.5 49.1 46.9 46.1 46.1 48.5 0.0154 0.0113 −0.0116 −0.0202 −0.0202 0.0052 
B10  9.6 6.9 9.1 8.4 8.6 7.9 8.8 −0.1636 −0.0267 −0.0667 −0.0549 −0.0971 −0.0435 
B11  15.6 22.9 15.1 22 23.6 20.9 21.8 0.1896 −0.0163 0.1702 0.2041 0.1452 0.1658 
B12  32.9 31.1 31.1 31.8 26.6 26.1 30.3 −0.0281 −0.0281 −0.0170 −0.1059 −0.1153 −0.0411 
B13  64.8 66 58.7 64.1 59.3 0 61.6 0.0092 −0.0494 −0.0054 −0.0443 −1.0000 −0.0253 
B14  31.2 30.9 31.7 30.8 29.3 30.6 26.5 −0.0048 0.0079 −0.0065 −0.0314 −0.0097 −0.0815 
B15  14.1 14.7 14.9 13.7 13.4 13.4 13.4 0.0208 0.0276 −0.0144 −0.0255 −0.0255 −0.0255 
B16  26.1 25.9 25.3 24.4 24.6 24.1 25.2 −0.0038 −0.0156 −0.0337 −0.0296 −0.0398 −0.0175 
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B17  11.7 15.9 15.8 14.4 15.1 11.5 14.7 0.1522 0.1491 0.1034 0.1269 −0.0086 0.1136 
B18  12 13 12.4 11.9 12 12 12.6 0.0400 0.0164 −0.0042 0.0000 0.0000 0.0244 
B19  10.6 12 10.8 11 10.4 9.4 10.4 0.0619 0.0093 0.0185 −0.0095 −0.0600 −0.0095 
B20  17.9 16.7 17.4 17 15.3 14.6 15.1 −0.0347 −0.0142 −0.0258 −0.0783 −0.1015 −0.0848 
∑Lw μLDM  0.0088 −0.0002 −0.0332 −0.0259 −0.0257 −0.0135       

    0.88% −0.02% −3.32% −2.59% −2.57% −1.35%       
Tower T1  32.2 28.7 28.5 36.1 35.8 36 35.4 −0.0575 −0.0610 0.0571 0.0529 0.0557 0.0473 

 ∑Lw μLDM  −0.0512 −0.0540 0.0640 0.0589 0.0623 0.0520       

    −5.12% −5.4% 6.4% 5.89% 6.23% 5.2%       

 
Figure 12. Normalized visibility index of archaeological features from LiDAR derived models (see 
Table 2). 

However, although the overlap of features identified by the two methods described is 
very similar, the automatic extraction seems to produce less-sharp contours, with small areas 
of "false positive". In general, the automatic method, as observed for segment lengths, tends 
to overestimate portions of areas of archaeological interest, especially in the case of remains of 
wall structures that are typically surrounded by large amounts of collapsing material. 

In this regard, fieldwork has been very useful both to characterize the different types 
of archaeological features and to validate the UAV LiDAR-based approach for identifying 
archaeological features (see Figure 13). 
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Figure 13. Ground data validation: (1–3) remnants of partially preserved collapsed structures and 
microrelief related to buildings; (4) perimeter walls; (5) partially collapsed structure of which an 
arch of the first or basement floor can be seen; (6) tower masonry. 

3.3. Archaeological Analysis of the Identified Features 
The machine learning-based approach, along with data enhancement, enabled to 

overcome several obstacles in the identification of archaeological features under canopy, 
including the removal of vegetation (from low to high vegetation), the improvement of 
visibility of microtopographical variations (Figure 8) related to fossilized urban design of 
the medieval settlement, and their extraction (Figures 9 and 10).  

From a purely archaeological point of view, the analysis of the data acquired yielded 
much information that could not be acquired by other sensors or methods (Figure 10).  
The studies on the Perticara site are similar to the result obtained by Masini et al. [4] on 
Cisterna, a medieval site found in the same geographical context. For the study of the 
topographic distribution of the Perticara settlement, the considerable amount of collapse 
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levels obliterating the structures should be taken into account. The degree of visibility of 
architectural artifacts is dictated by elevation structures and microreliefs, characterized by 
a convex perimeter and a concave interior. However, the presence of a building can be 
assumed based on the consistency of the collapsed material in several points. 

Analysis of the derived LiDAR data, as well as of the identified features, shows a highly 
articulated settlement—confirmed by in situ analyses (see Figure 13)—that is spread over an 
upland site. The settlement is divided into several sectors, as is often the case with sites from 
the medieval period. Architectural blocks have been identified within the settlement, which, 
starting from the top and reaching the lowest parts of the hill, delimit clearly defined built-up 
areas by their distinct structural and functional characteristics (Figures 14 and 15). 

 
Figure 14. Interpretation of the functional blocks of the settlement: (1) tower, (2) parade ground, (3) 
moat, (4) habitation, (5) defensive perimeter, (6) open square with fountains or cisterns, (7) landslide 
cutting through the medieval settlement, and (8) quarry; (a–c) represent the section line of the profile 
shown below. 
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Figure 15. DFM hillshading 3D view interpreted feature overlay as in Figure 9: (a) northeast view; 
(b) west view. 

The site is divided (northeast to southwest) into: tower (9 × 9 m approx.), parade ground 
(40 m approx.), ditch, built-up area, and defensive perimeter. Also identifiable from the LiDAR 
data are what appear to be a quarry (Figures 14 and 15, n.8) and the landslide that cut off part 
of the medieval settlement (Figures 14 and 15, n.7). The habitation consists of quadrangular 
and rectangular rooms averaging 5 × 5 meters in size, often associated a group of two or more, 
lacking a probable upper floor. The rooms overlook squares with cisterns or fountains (Figures 
14 and 15, n.6) and roads, and there are at least two main road axes, one towards the southern 
slope and one on the northern slope. One point to note is that the identified habitable areas 
occupy an area of about 7,700 m2, which could have reached 15,000 m2 or more if one considers 
that each building had at least one raised floor. This number is consistent with estimates made 
through archaeological sources that cite a population of about 1,000 people (240 hearthstones) 
in the village during the 13–14 century. The village is spread over several levels and is divided 
into a number of building cores, with the first located in the lowest area located to the south, 
composed of rectangular building bodies, some of which are divided into several rooms. A 
second large nucleus is distributed in the northern and eastern part of the slope and is charac-
terized by an arrangement of terraced building bodies on two different levels. The entrance to 
the site must have been located to the southeast near the embankment that gives access to the 
built-up parts (Figures 14 and 15, n.5). The innermost part of the site (northwest) has a fortified 
area consisting of a moat (Figures 14 and 15, n.3) enclosing a parade ground with several struc-
tures that could have functioned as housing for guards, storerooms, or functional places for 
life in the lordly area. The settlement ends with a quadrangular tower, of which only the lower 
part is preserved. The settlement of Perticara looks similar to many others from the same pe-
riod of the Italian Middle Ages [82,83].  

4. Conclusions 
This paper presents a machine-learning approach devised for the LIDAR-based iden-

tification of archaeological sites under canopy in hilly regions that pose critical challenges 
for searching subtle archaeological remains. The presence of dense vegetation and tree 
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cover makes the reconnaissance of archaeological remains very difficult and the erosion, 
increased by slope, tends to affect over time the microtopographical features of potential 
archaeological interest, thus making them hardly identifiable. Filtering of LiDAR data, 
combined with data enhancement methods (e.g., Lee filter, derived LiDAR data, LISA, 
classifiers, and segmentation), allowed us to overcome several obstacles including (i) re-
moving vegetation, (ii) improving the visibility of features of archaeological interest (Fig-
ure 5), as well as (iii) extracting features of archaeological interest (Figures 6 and 7). 

Overall, the results of the UAV LiDAR-based approach applied to the Perticara site 
highlight three important findings from a technological, methodological, and archaeolog-
ical point of view, as listed below, respectively: 

i. The resolution of the LiDAR data from the drone is abundantly sufficient to recognize 
microtopographic features of archaeological interest, even in a context such as Per-
ticara, characterized by such high-wooded cover; 

ii. The automatic approach of extracting the same features, compared with the qualitative 
interpretation (in turn corroborated by ground validation), has proven to be effective 
and therefore mature to be used in operational scenarios of preventive archeology; 

iii. From an archaeological point of view, the application has allowed the reconstruction 
of the urban form, and the identification of its constituent elements from a construc-
tive and functional point of view. 
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